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Abstract. We treat a concave programming problem with a compact convex feasible set. Assuming
the differentiability of the convex functions which define the feasible set, we propose two solution
methods. Those methods utilize the convexity of the feasible set and the property of the normal cone
to the feasible set at each point over the boundary. Based on the proposed two methods, we propose a
solution algorithm. This algorithm takes advantages over classical methods: (1) the obtained approx-
imate solution is always feasible, (2) the error of such approximate value can be evaluated properly
for the optimal value of such problem, (3) the algorithm does not have any redundant iterations.
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1. Introduction

In optimization theory, while theoretical researchers are interested in the existence
of optimal solutions of the problems, and engineering researchers are interested in
the solution method. In general, it is difficult to obtain optimal solutions directly.
Hence, both of them attempt to design an iterative method to solve the problem,
but, unfortunately, the procedure does not always terminate within finite iterations.
Therefore, they may compromise their aim to get one of approximate solutions
to the problems. Outer approximation methods were contrived to obtain such an
approximate solution for global optimization problems. The first approach was the
cutting plane method and it was developed in order to solve convex programming
problems (see Cheney and Goldstein [2]; Kelley [8]). Another approach called the
supporting hyperplane method was proposed by Veinott [13].

The purpose of the paper is to get over three incomplete points which we
encounter on implementation of a classical outer approximation algorithm for a
concave programming problem. First, an approximate solution obtained by the
algorithm is not always feasible. Secondly, we cannot evaluate the error of the
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obtained solution by the algorithm from the optimal value of the problem. Lastly,
the algorithm may have redundant iterations. We denote these incomplete points I,
II and III, respectively.

The organization of the paper is as follows: In Section 2, in order to find an
optimal solution to minimize a quasi-concave function over a compact convex set
defined by differentiable convex functions under the slater condition, we formulate
outer approximation algorithms based on two procedures: one is the cutting plane
method, the other is the supporting hyperplane method. In Section 3, we explain
three incomplete points of the classical algorithms. In Section 4, we get over the in-
complete points I–III by improving each algorithm. For the incomplete points I and
II, we improve the algorithms by using convexity of functions defining the feasible
set. For the incomplete point III, we improve the algorithm based on the supporting
hyperplane method by using a property of the normal cone to the feasible set at each
points over the boundary. Finally, we combine such improvement to propose one
algorithm which gets over the incomplete points I, II and III, simultaneously.

Throughout the paper, we use the followings: intD, bdD and coD denote
the interior set ofD ⊂ Rn, the boundary set ofD and the convex hull ofD,
respectively. Let fora, b ∈ Rn, ]a, b[= {x ∈ Rn : x = a + δ(b − a), 0 <

δ < 1}. Given a convex polyhedral set (or polytope)D ⊂ Rn, V (D) denotes the
set of all vertices ofD. Given a closed setD ⊂ Rn, E(D) denotes the set of all
extreme points. Given a nonempty setD ⊂ Rn, D∗ denotes the nonpositive polar
cone ofD. Given a nonempty closed setD ⊂ Rn, TD(y) andND(y) denote the
tangent cone toD at y ∈ D and the normal cone toD at y ∈ D, respectively.
Given a convex functionf : Rn → R, ∂f (x) denotes the subdifferential off
at x. Given a differentiable functionf : Rn → R, ∇f (x) denotes the gradient
of f at x ∈ Rn. For a functionf : Rn → R and a nonempty setD ⊂ Rn,
minf (D) and arg minf (D) denote the minimum value off overD and the set
of all solutions minimizingf overD, respectively. The terminology and above
definitions in convex analysis can be referred to in [1] and [11].

2. Outer approximation algorithm for the quasi-concave programming
problem

Let us consider a quasi-concave programming problem defined as follows:

(P )

{
Minimize f (x)

subject to gi(x) ≤ 0, i = 1, . . . , m,

wheref : Rn → R is a continuous quasi concave function andgi : Rn → R,
i = 1, . . . , m, are differentiable convex functions. We assume that the feasible set

D := {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . , m}
is compact, and that

int D = {x ∈ Rn : max
i=1,... ,m

gi(x) < 0} 6= ∅.
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Let g(x) := maxi=1,... ,m gi(x), thenD = {x ∈ Rn : g(x) ≤ 0} andg : Rn → R is
a convex function. The minimum of problem(P ) is always attained in at least one
extreme point ofD (Thieu et al. [12]). Therefore, minf (D) = minf (E(D)) and
(arg minf (D))∩E(D) 6= ∅. If the feasible setD is a polytope,(arg minf (D))∩
V (D) 6= ∅.

To find a minimum solution of problem(P ) whose feasible setD is not a
polytope, we now formulate the outer approximation algorithm:

ALGORITHM OAM

Step 0. Generate a polytopeS1 such thatS1 ⊃ D. Setk← 1.
Stepk. (i) Choosevk ∈ V (Sk) such thatvk solves the following relaxed problem

(Qk):

(Qk)

{
Minimize f (x)

subject to x ∈ Sk.
(ii) If vk ∈ D, then stop;vk solves problem(P ). (SC1)
(iii) Otherwise, construct an affine functionhk : Rn→ R satisfying that

hk(v
k) > 0 (1)

and that

hk(x) ≤ 0 for all x ∈ D, (2)

and set

Sk+1 := Sk ∩ {x ∈ Rn : hk(x) ≤ 0}. (3)

(iv) Setk← k + 1 and go to stepk.

Assume that the algorithm OAM generates a sequence{vk} such thatvk ∈ V (Sk)
is a solution for problem(Qk). Then for anyvp, vq ∈ {vk}, p < q, we have

f (vp) ≤ f (vq). (4)

If the algorithm OAM terminates withk0 iterations(k0 > 0), vk0 solves problem
(P ).

THEOREM 2.1. (See [12].) If the algorithm OAM generates an infinite sequence
{vk}∞k=1, then every accumulation point of{vk}∞k=1 belongs toD and it solves prob-
lem(P ).

COROLLARY 2.1. If we replace stopping criterion(SC1)by the following one:
If g(vk) ≤ ε for a givenε > 0, then stop(SC2); vk is an approximate solution of
(P ), then the algorithm OAM terminates within finite iterations for problem(P ).
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REMARK 2.1. Let{vk}∞k=1 be generated by the algorithm OAM and letv̄ be an
accumulation point of{vk}∞k=1, then by condition(4), we have

f (v1) ≤ f (v2) ≤ · · · ≤ f (vk) ≤ · · · ≤ f (v̄) andf (vk)→ f (v̄) ask→∞.
As for ways of constructing an affine function, we have the following two kinds

of procedures. One is based on the cutting plane method, the other is based on
the supporting hyperplane method. At first, we consider the former procedure. In
the case thatvk /∈ D at stepk in the algorithm OAM, we can construct an affine
functionhk : Rn→ R by

hk(x) := 〈∇gik (vk), x − vk〉 + g(vk) (5)

whereik ∈ L(vk) := {i : gi(vk) = g(vk), i = 1, . . . , m}. Sinceg(vk) > 0,
〈∇gi(vk), vk − vk〉 + g(vk) = g(vk) > 0 for any i ∈ L(yk). Moreover, since
that∇gi(vk) ∈ ∂g(vk) for any i ∈ L(yk), and thatg(x) ≤ 0 for any x ∈ D,
〈∇gi(vk), x − vk〉 + g(vk) = g(x) ≤ 0 for anyx ∈ D. Therefore, the way of
choosing from elements inL(yk) is not restrained.

Next, we consider the other procedure, i.e., the supporting hyperplane method.
In order to implement the procedure for problem(P ), we add the process to choose
x̂ ∈ int D on step 0 of the procedure. Since intD = {x ∈ Rn : g(x) < 0} 6= ∅, we
can choosêx ∈ int D. At stepk of the algorithm, ifvk /∈ D, then we can construct
an affine functionhk : Rn→ R by

hk(x) := 〈∇gik (yk), x − yk〉 (6)

whereik ∈ L(yk) andyk ∈ bdD such thatyk ∈]vk, x̂[. Indeed, since{x ∈ Rn :
hk(x) = 0} is a supporting hyperplane ofD at yk ∈ bd D, the affine function
hk : Rn→ R defined by condition (6) satisfies thathk(vk) > 0 and thathk(x) ≤ 0
for anyx ∈ D.

As previously indicated,Sk+1 is defined by constraints from condition (3). A
constrainthj0(x) ≤ 0 (j0 ∈ {1, . . . , k}) is said to be redundant forSk+1 if the
removal of it does not change setSk+1, i.e.,

Sk+1 = S1 ∩ {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . , k}
= S1 ∩ {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . , k andj 6= j0}.

A non redundant constraint forSk+1 is called essential forSk+1.

3. Confronting incomplete points

When we use the algorithm OAM replacing stopping criterion(SC1)by (SC2)for
problem(P ), we are confronted by the following incomplete points:

I. An approximate solution given by the algorithm is not always contained in
the feasible setD of problem(P ).
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Figure 1. Stopping criterion(SC2); Dε := {x ∈ Rn : g(x) < ε} (ε > 0).

II. We cannot evaluate the error of the solution obtained by the algorithm for the
optimal value of problem(P ).

III. At stepk0 of the algorithm, a constructed affine functionhk0 may be redundant
to the feasible setSk of the relaxed problem(Qk) for all k > k0 + 1 (the
constrainthk0(x) ≤ 0 is essential forSk0+1, becauseSk0+1 = Sk0 ∩ {x ∈ Rn :
hk0(x) ≤ 0} andvk0 ∈ Sk0\Sk0+1 wherevk0 solves the relaxed problem(Qk0)).

Let us see the the inconvenience caused by each incomplete point.
First, we consider the incomplete point I. When we solve problem(P ) by an

outer approximation method, our purpose is to get an optimal solution of the prob-
lem. However, it often occurs that we do not get an optimal solution of problem(P )

within finite iterations. In order to terminate the procedures within finite iterations,
we may compromise our aim by getting an approximate solution for problem(P ).
Since such an approximate solution is possibly infeasible, there are some cases
where we cannot be satisfied with the solution.

The reason why the incomplete point II occurs is as follows. Assume thatvk is
an approximate solution obtained by the algorithm OAM with stopping criterion
(SC2)and thatfopt denotes the optimal value. Sincevk is an approximate solution
minimizesf over Sk ⊃ D, it can be assumed thatfopt − f (vk) > 0. From
the approximation viewpoint, we should determine a specificδ > 0 such that
fopt − f (vk) < δ, but we cannot find such a scalarδ by the algorithm. Because
the perturbation setDε in Figure 1 depends on a restriction functiong as well as a
given toleranceε > 0, and hence the minimum value off overDε, sayfε−opt in
Figure 1, is not so close to the optimal valuefopt even ifε is sufficiently small.

Finally, we see the incomplete point III.
At stepk0 in the algorithm OAM based on the supporting hyperplane method,

we assume thatvk0 is an optimal solution for the relaxed problem(Qk0). We con-
sider two cases in construction of an affine functionhk0 : Rn → R separating the
point vk0 from the feasible setD. The cases A and B are depicted at the left hand
in Figures 2 and 3, respectively. The affine functionhk0 in case A may come to be
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Figure 2. At stepr (r > k0+ 1), hk0(x) ≤ 0 is a redundant condition forSr .
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Figure 3. At any stepr (r > k0+ 1),hk0(x) ≤ 0 is an essential condition forSr .

redundant in the relaxed problem at some steps after stepk0 as shown at the right
hand in Figure 2. Furthermore, ifhk0(x) ≤ 0 is redundant forSr (r > k0 + 1),
then it is not so easy to findV (Sr). To overcome this difficulty, the method of
eliminating redundant constraints has been suggested by Horst and Tuy [6], and
Thieu et al. [12]. On the other hand, the affine functionhk0 in case B is always
essential for composing feasible sets of each relaxed problem after stepk0 as shown
at the right hand in Figure 3. At each stepk in the algorithm, we should construct an
essential affine functionhk : Rn → R for composing feasible sets of each relaxed
problem after stepk.

4. Improvement of the algorithm

4.1. IMPROVEMENT OF THE ALGORITHM OAM FOR GETTING OVER THE

INCOMPLETE POINTS I AND II

In order to getting over the incomplete points I and II, we improve the algorithm
OAM by replacing the stopping criterion(SC1)by another stopping criterion. We
distinguish the following two cases:

Case 1:An infinite sequence is generated by the algorithm for problem(P ).

Case 2:A finite sequence is generated by the algorithm for problem(P ).
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Figure 4. {yk}∞
k=1 determined by (7) for{vk}∞

k=1.

We do not need to think over such an improvement of the algorithm in Case 2.
Because an improvement for Case 1 implies that for Case 2 at the same time.

4.1.1. On the cutting plane method

We improve the algorithm OAM based on the cutting plane method in Case 1.
Denote by{vk}∞k=1 an infinite sequence generated by the algorithm for problem
(P ). Assume that̄v is an accumulation point of{vk}∞k=1. Then, from Theorem 2.1,
we remember that̄v is contained in the feasible setD of problem(P ) and thatv̄
is an optimal solution for problem(P ), i.e.,f (v̄) is the optimal value for problem
(P ). Since intD 6= ∅, we can choosêx ∈ int D. Clearly,g(x̂) < 0. Let for all
k ∈ {1,2, . . . },

yk := (1− λk)vk + λkx̂, (7)

whereλk := g(vk)/g(vk)− g(x̂), then it follows from the following theorem that
{yk}∞k=1 belongs toD and that{yk}∞k=1 has a subsequence{ykq }∞q=1 such thatykq →
v̄ asq →∞.

THEOREM 4.1. Assume that an infinite sequence{vk}∞k=1 is generated by the
algorithm OAM based on the cutting plane method for problem(P ) and that v̄
is an accumulation point of{vk}∞k=1, then the infinite sequence{yk}∞k=1 defined by
condition(7) for {vk}∞k=1 satisfies the following conditions:

(i) {yk}∞k=1 ⊂ D and
(ii) there is a subsequence{ykq }∞q=1 ⊂ {yk}∞k=1 such thatykq → v̄ asq →∞.
Proof. At first, we prove the statement (i). Letλk = g(vk)/g(vk)− g(x̂) for

eachk ∈ {1,2, . . . }. Sinceg(vk) > 0 for all k ∈ {1,2, . . . } andg(x̂) < 0, we
haveg(vk) − g(x̂) > 0 for all k ∈ {1,2, . . . }. Therefore, 0< λk < 1 for all k ∈
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{1,2, . . . }. Moreover, sinceg is a convex function,g(yk) = g((1−λk)vk+λkx̂) ≤
(1− λk)g(vk)+ λkg(x̂) = 0 for all k ∈ {1,2, . . . }. Consequently,{yk}∞k=1 ⊂ D.

Next, we prove the statement (ii). Sincev̄ is an accumulation point of{vk}∞k=1,
there is a subsequence{vkq }∞q=1 such thatvkq → v̄ asq → ∞. Moreover, sinceg
is continuous,g(vkq ) → g(v̄) = 0 asq → ∞. Therefore,λkq → 0 asq → ∞.
Consequently,ykq = (1− λkq )vkq + λkq x̂ → v̄ asq →∞. E

For the sequence{yk}∞k=1 in Theorem 4.1, we setMk := min{f (yi) : i =
1,2, . . . , k} for all k ∈ {1,2, . . . }. By Theorem 4.1 and the continuity off , we
can verify that

M1 ≥ M2 ≥ · · · ≥ Mk ≥ · · · ≥ f (v̄) and Mk → f (v̄) ask→∞. (8)

According to condition(8) and Remark 2.1,

∀ε > 0, ∃k0 ∈ {1,2, . . . } such that Mk0 − f (vk0) < ε. (9)

Then, we consider the following stopping criterion:
If Mk − f (vk) < ε for a givenε > 0, then stop:ŷ ∈ arg min{f (yi) : i =
1,2, . . . , k} is an approximate solution of problem(P ) (NSC).

By condition (9), the algorithm with(NSC) terminates after finite iterations. As-
sume that the algorithm terminates at steps, that is,Ms − f (vs) < ε for a given
ε > 0. Then, we have an approximate solutionŷ for problem(P ) by the algorithm
with (NSC), it satisfies the following:

f (ŷ)− f (v̄) ≤ f (ŷ)− f (vs) < ε and ŷ ∈ D.
Consequently, we get over the incomplete points I and II by improving the algo-
rithm OAM based on the cutting plane method by replacing the stopping criterion
(SC1)by (NSC).

4.1.2. On the supporting hyperplane method

In this section, we improve the algorithm OAM based on the supporting hyper-
plane method in Case 1. Denote by{vk}∞k=1 an infinite sequence generated by
the algorithm for problem(P ). Then, we remember that the infinite sequence
{yk}∞k=1 ⊂ D satisfying yk ∈]vk, x̂[∩bd D (k = 1,2, . . . ) are generated by
the algorithm for{vk}∞k=1 (see condition(6)). Assume that̄v is an accumulation
point of {vk}∞k=1. Then, it follows from the following theorem that{yk}∞k=1 has a
subsequence{ykq }∞q=1 such thatykq → v̄ asq →∞.

THEOREM 4.2. Assume that̂x is an interior point of the feasible setD of prob-
lem (P ) and that infinite sequences{vk}∞k=1 and {yk}∞k=1 are generated based on
the supporting hyperplane method for the problem wherevk is an optimal solu-
tion of the relaxed problem(Qk) for all k ∈ {1,2, . . . } and yk ∈]vk, x̂[ for all
k ∈ {1,2, . . . }. Let v̄ be an accumulation point of{vk}∞k=1. Then{yk}∞k=1 has a
subsequence{ykq }∞q=1 ⊂ {yk}∞k=1 such thatykq → v̄ asq →∞.
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Figure 5. {yk}∞
k=1 generated by the algorithm OAM based on the supporting hyperplane

method for problem(P ).

Proof. Sincev̄ is an accumulation point of{vk}∞k=1, {vk}∞k=1 has a subsequence
{vkq }∞q=1 such thatvkq → v̄ asq → ∞. Let µkq := g(vkq )/g(vkq )− g(x̂) for all
q ∈ {1,2, . . . }. Sinceg(vkq ) > 0 for all q ∈ {1,2, . . . } andg(x̂) < 0, we have
0 < µkq < 1 for all q ∈ {1,2, . . . }. Moreover, sinceg(vkq ) → g(v̄) = 0 as
q →∞, we get thatµkq → 0 asq →∞.

For {vkq }∞q=1, we remember that a subsequence{ykq }∞q=1 ⊂ {yk}∞k=1 satisfying
ykq ∈]vkq , x̂[∩bd D for all q ∈ {1,2, . . . } is generated by the algorithm (see
condition (6)). Therefore, there areλkq ∈]0,1[, for q = 1,2, . . . , such thatykq =
(1− λkq )vkq + λkq x̂. Sinceg(ykq ) = 0 for all q ∈ {1,2, . . . } andg is convex, we
have

0 = g(ykq ) = g((1− λkq )vkq + λkq x̂)
≤ (1− λkq )g(vkq )+ λkqg(x̂)
= (1− µkq )g(vkq )+ µkqg(x̂)+ (µkq − λkq )(g(vkq )− g(x̂))

for all q ∈ {1,2, . . . }. Moreover, since(1 − µkq )g(vkq ) + µkq g(x̂) = 0 for all
q ∈ {1,2, . . . }, we get 0≤ (µkq − λkq )(g(vkq ) − g(x̂)) for all q ∈ {1,2, . . . }.
Sinceg(vkq ) − g(x̂) > 0 for all q ∈ {1,2, . . . }, we get thatλkq ≤ µkq for all
q ∈ {1,2, . . . }.

Consequently, we get thatλkq → 0 asq → ∞. Thus, by(6), ykq → v̄ as
q →∞. This completes the proof. E

From the result of Theorem 4.2, we get over the incomplete points I, II by improv-
ing the algorithm by using the stopping criterion(NSC).
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4.2. IMPROVEMENT OF THE ALGORITHM OAM FOR GETTING OVER THE

INCOMPLETE POINT III

The algorithm OAM based on the supporting hyperplane method for problem(P )

does not have the incomplete point III, if the restriction of the feasible set is a
strict convex function (Horst and Tuy [6]). In this section, for problem(P ) whose
feasible setD is defined by a not-strict restriction, we improve the algorithm OAM
for getting over the incomplete point III. We suggest another way of constructing
an affine functionhk : Rn → R in the case ofvk /∈ D at stepk, of the algorithm
OAM for problem(P ). At first, we consider an affine function

hk(x) := 〈ak, x − yk〉 (10)

whereyk ∈]vk, x̂[∩bdD for a givenx̂ ∈ int D andak ∈ ∂g(yk) is an extreme
direction ofND(yk).

REMARK 4.1. LetD ⊂ Rn be a compact, convex set andD := {x ∈ Rn :
gi(x) ≤ 0, i = 1, . . . , m} wheregi : Rn→ R, i = 1,2, . . . , m, are differentiable
convex functions. Then, for ally ∈ D,

∂g(y)=
x ∈ Rn : x= ∑

i∈L(y)
λi∇gi(y),

∑
i∈L(y)

λi=1, λi ≥ 0 for all i ∈ L(y)
 .

LEMMA 4.1. LetD ⊂ Rn be a compact, convex set andD := {x ∈ Rn : gi(x) ≤
0, i = 1, . . . , m} wheregi : Rn → R, i = 1, . . . , m, are differentiable convex
functions and letND(y) be the normal cone toD at y ∈ D. If int D = {x ∈ Rn :
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gi(x) < 0, i = 1, . . . , m} 6= ∅, then for ally ∈ bdD,

ND(y) =
x ∈ Rn : x = ∑

i∈L(y)
λi∇gi(y), λi ≥ 0 for all i ∈ L(y)

 .
Proof.Let TD(y) be the tangent cone toD at y ∈ D. Since intD = {x ∈ Rn :

gi(x) < 0, i = 1, . . . , m} 6= ∅, we have for ally ∈ bdD,

TD(y) = {x ∈ Rn : 〈∇gi(y), x − y〉 ≤ 0, i ∈ L(y)}.
Therefore, for ally ∈ bdD,

ND(y)=TD(y)∗=
x∈Rn : x= ∑

i∈L(y)
λi∇gi(y), λi≥0 for all i ∈ L(y)

 .
Then, by the following theorem that we can get over the incomplete point III.

THEOREM 4.3. Assume thatvk0 /∈ D is an optimal solution of the relaxed prob-
lem (Qk0) at stepk0 in the algorithm OAM based on the way of constructing
an affine function defined by condition (10) for problem(P ). Then, a constraint
hk0(x) ≤ 0 is essential forSk (k > k0), i.e.,

Sk = S1 ∩ {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . , k − 1}
6= S1 ∩ {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . , k − 1 andj 6= k0}.

Proof. We consider a closed half spaceX := {x ∈ Rn : hk0(x) ≤ 0}. For each
k > k0, let

H
′
k := {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . , k − 1 and j 6= k0}.

We shall show that for eachk > k0,H
′
k 6⊂ X. Suppose to the contrary thathk0(x) ≤

0 for all x ∈ H ′k. Foryk0 ∈]vk0, x̂[∩bdD for somex̂ ∈ intD, we haveyk0 ∈ bdH
′
k

sinceD ⊂ H ′k ⊂ X andyk0 ∈ bdD∩bdX. Thus, there isp ∈ {1, . . . , k−1}\{k0}
such thathp(yk0) = 0. LetP

′
k be the set of all indices satisfying thathp(yk0) = 0.

SinceHk0 is a closed convex cone and the setY := {x ∈ Rn : hp(x) ≤ 0, p ∈ P ′k}
is a convex cone, we haveY ⊂ X. Moreover, for allp ∈ P ′k , andx ∈ Rn,

hp(x) = 〈ap, x − yp〉 = 〈ap, x − yk0〉 + 〈ap, yk0 − yp〉
= 〈ap, x − yk0〉 + hp(yk0) = 〈ap, x − yk0〉, (11)

and soY = {x ∈ Rn : 〈ap, x− yk0〉 ≤ 0, p ∈ P ′k} and by condition (10),X = {x ∈
Rn : 〈ak0, x − yk0〉 ≤ 0}. We note thatX andY are convex polyhedral cones, and
then

(X − yk0)∗ = {z ∈ Rn : z = λak0, λ ≥ 0},
(Y − yk0)∗ = {z ∈ Rn : z =∑

p∈P ′k λpa
p, λp ≥ 0, p ∈ P ′k}.
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SinceY − yk0 ⊂ X− yk0, we have(Y −{yk0})∗ ⊃ (X−{yk0})∗. Consequently, we
get that there areλp ≥ 0,p ∈ P ′k, satisfying that∑

p∈P ′k

λpa
p = ak0. (12)

Sinceap ∈ ∂g(yp) for all p ∈ P ′k andyp ∈ bdD,

g(x) ≥ 〈ap, x − yp〉 + g(yp) = 〈ap, x − yp〉, for all x ∈ Rn. (13)

From conditions (11) and (13), it follows that for allx ∈ Rn, g(x) ≥ 〈ap, x− yk0〉,
p ∈ P ′k. Consequently, we get that

ap ∈ ∂g(yk0) ⊂ U(yk0), for all p ∈ P ′k. (14)

The optimality ofvk0 for the relaxed problem(Qk0) implies thatyk0 /∈ bdSj for
all j ≤ k0, i.e.,P

′
k ∩ {1, . . . , k0 − 1} = ∅. Sincehk0(x̂) < 0 andhk0(v

p) ≤ 0 for
all p ∈ P ′k, we have

hk0(y
p)=〈ak0, yp−yk0〉=(1−µp)〈ak0, vp−yk0〉+µp〈ak0, x̂−yk0〉<0,

(15)

whereµp ∈]0,1[, p ∈ P ′k, satisfyingyp = (1−µp)vp+µpx̂. Moreover,hp(yk0) =
〈ap, yk0 − yp〉 = 0 for all p ∈ P ′k. Consequently, we get that

ak0 6= λpap, for all p ∈ P ′k, λp ≥ 0. (16)

By conditions (12), (14) and (16), there arex1, x2 ∈ U(yk0), α1, α2 > 0 such
that x1 6= ak0, x2 6= ak0 andak0 = α1x

1 + α2x
2. By condition (10),ak0 is an

extreme direction ofND(yk0). This is a contradiction, and hence there isz ∈ H ′k
such thathk0(z) > 0, i.e.,H

′
k 6⊂ X. Sinceyk0 /∈ bd S1, we get thatSk 6= S1 ∩ H ′k.

This completes the proof. E

From the result of Theorem 4.3, we can get over the incomplete point III by im-
proving the algorithm by using condition (10). However, in order to implement the
algorithm OAM, the following question must be examined:

(A) How do we find an extreme direction ofND(yk) in each step ?

We consider the case thatvk /∈ D at stepk in the algorithm OAM. If|L(yk)| ≤
2, then for anyi ∈ L(yk), ∇gi(yk) is an extreme direction ofND(yk). Other-
wise, by denoting thatL(yk) = {i1, . . . , ilk} (lk ≥ 3), we consider the following
problem:

(Ek)

{
Minimize 〈vk − yk, cj 〉
subject to cj = 1

‖∇gij (yk)‖
∇gij (yk), j = 1, . . . , lk.
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Note that at each stepk in the algorithm,lk ≤ m (we note thatm is the number
of the differentiable convex functions which define the feasible setD of problem
(P )). Thus, at each stepk in the algorithm, the number of the feasible solutions of
problem(Ek) is finite.

THEOREM 4.4. If c̄ is an optimal solution of(Ek), thenc̄ is an extreme direction
ofND(yk).

Proof. We shall show that̄c 6= λ1c
j1 + λ2c

j2 for any cj1, cj2 ∈ {cj : j =
1, . . . , lk} andλ1, λ2 > 0. Indeed, suppose to the contrary that there existj1, j2 ∈
{1, . . . , lk}, λ1, λ2 > 0 such that̄c = λ1c

j1 + λ2c
j2, c̄ 6= cj1, c̄ 6= cj2, cj1 6= cj2.

Since〈cj1, cj2〉 < 1,

1= 〈c̄, c̄〉 = 〈λ1c
j1 + λ2c

j2, λ1c
j1 + λ2c

j2〉
= λ1

2〈cj1, cj1〉 + λ2
2〈cj2, cj2〉 + 2λ1λ2〈cj1, cj2〉

< λ1
2+ λ2

2+ 2λ1λ2

= (λ1+ λ2)
2.

Hence, we have

〈vk − yk, c̄〉 = λ1〈vk − yk, cj1〉 + λ2〈vk − yk, cj2〉
≥ (λ1+ λ2)min{〈vk − yk, cj1〉, 〈vk − yk, cj2〉}
> min{〈vk − yk, cj1〉, 〈vk − yk, cj2〉}.

This is a contradiction to the optimality ofc̄ for problem(Ek). This completes the
proof. E

From the result of Theorem 4.4, it follows thatc̄ is an extreme direction ofND(yk)
provided thatc̄ solves problem(Ek). In order to get over the incomplete point III
and settle question (A), in the case of the algorithm OAM for problem(P ), we
construct an affine functionhk : Rn→ R by

hk(x) := 〈c̄, x − yk〉 (17)

whereyk ∈]vk, x̂[∩bd D for somex̂ ∈ int D and c̄ is a minimizing point of
〈vk − yk, c〉 over {c ∈ Rn : c = ∇gi(yk)/‖∇gi(yk)‖, i ∈ L(yk)}. Clearly,
hk : Rn → R satisfies thathk(vk) > 0 and thathk(x) ≤ 0 for any x ∈ D.
Hence, the affine functionhk(x) defined by condition (17) satisfies conditions (1)
and (2). Consequently, we can implement the proposed algorithm OAM by using
such functionhk(x).

5. Conclusions

In this paper, we have presented two kinds of algorithms of an outer approxima-
tion method for a quasi-concave programming problem. One of them generates
an infinite sequence which is contained in the feasible set of the problem and



280 S. YAMADA AND T. TANAKA

whose accumulation points are optimal solutions for the problem, or it generates
a finite sequence which is contained in the feasible set and whose terminal point
is an optimal solution for the problem. Implementing the algorithm we can get an
approximation value with its error for the optimal value less than a given posi-
tive constant (tolerance), and the approximate solution is always contained in the
feasible set.

At each step, the other algorithm generates an essential inequality which is
needed to produce a feasible set of each relaxed problems for the original problem
whose feasible set is defined by a finite number differentiable convex functions.
Therefore, the algorithm does not have any redundant iterations. Consequently, the
algorithm does not need to have an additional procedure of identifying redundant
constraints.

Finally, by combining such two algorithms with(NSC) and by constructing
an affine function defined by condition (17) in each step at the same time, we
can propose one algorithm getting over the incomplete points I, II and III for the
algorithm OAM for problem(P ) simultaneously.
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