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Abstract. We treat a concave programming problem with a compact convex feasible set. Assuming
the differentiability of the convex functions which define the feasible set, we propose two solution
methods. Those methods utilize the convexity of the feasible set and the property of the normal cone
to the feasible set at each point over the boundary. Based on the proposed two methods, we propose a
solution algorithm. This algorithm takes advantages over classical methods: (1) the obtained approx-
imate solution is always feasible, (2) the error of such approximate value can be evaluated properly
for the optimal value of such problem, (3) the algorithm does not have any redundant iterations.
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1. Introduction

In optimization theory, while theoretical researchers are interested in the existence
of optimal solutions of the problems, and engineering researchers are interested in
the solution method. In general, it is difficult to obtain optimal solutions directly.
Hence, both of them attempt to design an iterative method to solve the problem,
but, unfortunately, the procedure does not always terminate within finite iterations.
Therefore, they may compromise their aim to get one of approximate solutions
to the problems. Outer approximation methods were contrived to obtain such an
approximate solution for global optimization problems. The first approach was the
cutting plane method and it was developed in order to solve convex programming
problems (see Cheney and Goldstein [2]; Kelley [8]). Another approach called the
supporting hyperplane method was proposed by Veinott [13].

The purpose of the paper is to get over three incomplete points which we
encounter on implementation of a classical outer approximation algorithm for a
concave programming problem. First, an approximate solution obtained by the
algorithm is not always feasible. Secondly, we cannot evaluate the error of the
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obtained solution by the algorithm from the optimal value of the problem. Lastly,
the algorithm may have redundant iterations. We denote these incomplete points I,
Il and Ill, respectively.

The organization of the paper is as follows: In Section 2, in order to find an
optimal solution to minimize a quasi-concave function over a compact convex set
defined by differentiable convex functions under the slater condition, we formulate
outer approximation algorithms based on two procedures: one is the cutting plane
method, the other is the supporting hyperplane method. In Section 3, we explain
three incomplete points of the classical algorithms. In Section 4, we get over the in-
complete points I-IIl by improving each algorithm. For the incomplete points | and
I, we improve the algorithms by using convexity of functions defining the feasible
set. For the incomplete point 11, we improve the algorithm based on the supporting
hyperplane method by using a property of the normal cone to the feasible set at each
points over the boundary. Finally, we combine such improvement to propose one
algorithm which gets over the incomplete points I, Il and Ill, simultaneously.

Throughout the paper, we use the followings: it bd D and coD denote
the interior set ofD C R", the boundary set ob and the convex hull o,
respectively. Let fola,b € R", la,b[= {x € R" : x = a+ 80 —a), 0 <
3 < 1}. Given a convex polyhedral set (or polytopR@) C R", V(D) denotes the
set of all vertices ofD. Given a closed seb C R", E(D) denotes the set of all
extreme points. Given a nonempty $8tC R", D* denotes the nonpositive polar
cone of D. Given a nonempty closed sé&t C R", Tp(y) and Np(y) denote the
tangent cone td aty € D and the normal cone t® aty € D, respectively.
Given a convex functiory : R" — R, df(x) denotes the subdifferential of
at x. Given a differentiable functiorf : R* — R, V f(x) denotes the gradient
of f atx € R". For a functionf : R — R and a nonempty seb C R",
min f (D) and arg minf (D) denote the minimum value of over D and the set
of all solutions minimizingf over D, respectively. The terminology and above
definitions in convex analysis can be referred to in [1] and [11].

2. Outer approximation algorithm for the quasi-concave programming
problem

Let us consider a quasi-concave programming problem defined as follows:

Minimize f(x)

(P) { subjectto g;(x) <0, i=1,...,m,

where f : R — R is a continuous quasi concave function and: R" — R,
i=1,...,m, are differentiable convex functions. We assume that the feasible set
D:={xeR":gx)<0,i=1...,m}
is compact, and that
intD={xeR": i=T?),(m gi(x) <0} £0.
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Letg(x) :== max_1 . ., & (x),thenD ={x € R": g(x) <0}andg : R" — R is
a convex function. The minimum of proble(®) is always attained in at least one
extreme point ofD (Thieu et al. [12]). Therefore, mifi(D) = min f(E (D)) and
(argminf (D)) N E(D) # @. If the feasible seD is a polytope(arg minf (D)) N
V(D) # 0.

To find a minimum solution of probleniP) whose feasible seb is not a
polytope, we now formulate the outer approximation algorithm:

ALGORITHM OAM

Step 0. Generate a polytoge such thatS; > D. Setk < 1.
Stepk. (i) Choosev* € V (Sy) such that* solves the following relaxed problem
(Qp):

Minimize f(x)

(@0 { subject to x € ;.

(i) If v* € D, then stopp* solves problentP). (SC1)
(iii) Otherwise, construct an affine functidn : R” — R satisfying that
he(*) >0 @
and that
hiy(x) <0 forallx € D, 2
and set
Sir1: =8 N{x € R": h(x) <0} 3

(iv) Setk < k+ 1 and go to step.

Assume that the algorithm OAM generates a sequén@esuch thaw* e V(S;)
is a solution for problentQy). Then for anyw?, v¢ € {v*}, p < g, we have

fP) = f9). (4)

If the algorithm OAM terminates witltg iterations(kq > 0), v*° solves problem
(P).

THEOREM 2.1. (See [12].) Ifthe algorithm OAM generates an infinite sequence
{v¥}2 , then every accumulation point pf*}2° ; belongs toD and it solves prob-
lem(P).

COROLLARY 2.1. If we replace stopping criterioSC1) by the following one:
If g(v¥) < ¢ for a givene > 0, then stop(SC2); v* is an approximate solution of
(P), then the algorithm OAM terminates within finite iterations for problgm.
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REMARK 2.1. Let{v*}?°, be generated by the algorithm OAM and {ebe an
accumulation point ofv*}?° ,, then by condition4), we have

fOH < f@d) <. < fM <. < f@) andf(v*) — f(¥) ask — oo.

As for ways of constructing an affine function, we have the following two kinds
of procedures. One is based on the cutting plane method, the other is based on
the supporting hyperplane method. At first, we consider the former procedure. In
the case that* ¢ D at stepk in the algorithm OAM, we can construct an affine
functionh, : R — R by

hi(x) i= (Vigi, V), x — ") + g (") (5)

wherei, € LY = {i : g;(0") = g, i = 1,...,m}. Sinceg(v*) > 0,
(Vg (05, vF — k) + g(v%) = g(*) > 0 for any i € L(y*). Moreover, since
that Vg; (v*) € ag(v*) for anyi € L(y%), and thatg(x) < O for any x € D,
(Vg (05, x — v8) + g(v*) = g(x) < 0 for anyx e D. Therefore, the way of
choosing from elements ih(y*) is not restrained.
Next, we consider the other procedure, i.e., the supporting hyperplane method.
In order to implement the procedure for problém), we add the process to choose
X € int D on step 0 of the procedure. Since t= {x € R" : g(x) < 0} # @, we
can choosé < int D. At stepk of the algorithm, ifv* ¢ D, then we can construct
an affine functior, : R" — R by

hi(x) i= (Vg (), x — y*) (6)

wherei; € L(y*) andy* e bd D such thaty* ]v¥, [. Indeed, sincdx € R" :
hy(x) = 0} is a supporting hyperplane @b at y* € bd D, the affine function
hy : R — R defined by condition (6) satisfies thigt(v*) > 0 and thati;(x) <0
foranyx € D.

As previously indicatedS; ., is defined by constraints from condition (3). A
constraints ;,(x) < 0 (jo € {1,...,k}) is said to be redundant fdf, if the
removal of it does not change s§t, 4, i.e.,

Sk+1 :Slﬂ{xeR”:hj(x)fo, j=1...,k}
:Slﬂ{xeR”:hj(x)SO, J:l,,kandj#]o}

A non redundant constraint f¢&¥, ; is called essential fa$; ;.

3. Confronting incomplete points
When we use the algorithm OAM replacing stopping crite(i8e1) by (SC2)for
problem(P), we are confronted by the following incomplete points:

I. An approximate solution given by the algorithm is not always contained in
the feasible seb of problem(P).
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Figure 1. Stopping criterior(SC2), D, := {x € R" : g(x) < &} (¢ > 0).

II. We cannot evaluate the error of the solution obtained by the algorithm for the
optimal value of probleniP).

ll. At step ko of the algorithm, a constructed affine functibp may be redundant
to the feasible sef; of the relaxed problentQ,) for all k > kg + 1 (the
constrainti,(x) < 0 is essential fofS;,.1, becauses ;1 = Sy, N {x € R" :
hie(x) < 0} andv*® € Sy,\ Si,+1 Wherev® solves the relaxed proble(@y,)).

Let us see the the inconvenience caused by each incomplete point.

First, we consider the incomplete point I. When we solve prob{@nby an
outer approximation method, our purpose is to get an optimal solution of the prob-
lem. However, it often occurs that we do not get an optimal solution of problem
within finite iterations. In order to terminate the procedures within finite iterations,
we may compromise our aim by getting an approximate solution for probRem
Since such an approximate solution is possibly infeasible, there are some cases
where we cannot be satisfied with the solution.

The reason why the incomplete point Il occurs is as follows. Assumethat
an approximate solution obtained by the algorithm OAM with stopping criterion
(SC2)and thatf,p: denotes the optimal value. Singkis an approximate solution
minimizes f over S D D, it can be assumed thaf, — f@* > 0. From
the approximation viewpoint, we should determine a spedifis 0 such that
fopt — f(VF) < 8, but we cannot find such a scalaby the algorithm. Because
the perturbation sab, in Figure 1 depends on a restriction functigmas well as a
given tolerances > 0, and hence the minimum value gfover D,, say f,_opt in
Figure 1, is not so close to the optimal valfig; even ife is sufficiently small.

Finally, we see the incomplete point Ill.

At stepkg in the algorithm OAM based on the supporting hyperplane method,
we assume that‘ is an optimal solution for the relaxed problei@;,). We con-
sider two cases in construction of an affine functign: R" — R separating the
point v*o from the feasible seD. The cases A and B are depicted at the left hand
in Figures 2 and 3, respectively. The affine functigpin case A may come to be
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BOR" (%)= 0) {30 R":ha, ()= 0)

Figure 2. Atstepr (r > kg + 1), iy, (x) < Ois a redundant condition fc; .

3
v’ 3

oo
(aq R":hi,(x)=0} {ag R":he,(x)=0}

Figure 3. Atany stepr (r > kg + 1), i (x) < 0is an essential condition fc.

redundant in the relaxed problem at some steps afterkgtap shown at the right
hand in Figure 2. Furthermore, #f,(x) < O is redundant folS, (r > ko + 1),

then it is not so easy to findf (S,). To overcome this difficulty, the method of
eliminating redundant constraints has been suggested by Horst and Tuy [6], and
Thieu et al. [12]. On the other hand, the affine functigy in case B is always
essential for composing feasible sets of each relaxed problem aftép stephown

at the right hand in Figure 3. At each stiejm the algorithm, we should construct an
essential affine functioh, : R” — R for composing feasible sets of each relaxed
problem after step.

4. Improvement of the algorithm

4.1. IMPROVEMENT OF THE ALGORITHM OAM FOR GETTING OVER THE
INCOMPLETE POINTS | AND |1

In order to getting over the incomplete points | and Il, we improve the algorithm
OAM by replacing the stopping criteriof8C1) by another stopping criterion. We
distinguish the following two cases:

Case 1: An infinite sequence is generated by the algorithm for proki@&m

Case 2: A finite sequence is generated by the algorithm for prob{&m
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£(x)

Figure 4. {y¥}>° | determined by (7) fofv}2° ;.

We do not need to think over such an improvement of the algorithm in Case 2.
Because an improvement for Case 1 implies that for Case 2 at the same time.

4.1.1. On the cutting plane method

We improve the algorithm OAM based on the cutting plane method in Case 1.
Denote by{v¥}?°, an infinite sequence generated by the algorithm for problem
(P). Assume thab is an accumulation point d*}2°,. Then, from Theorem 2.1,

we remember thai is contained in the feasible sé&t of problem(P) and thatv

is an optimal solution for probleraP), i.e., f (v) is the optimal value for problem
(P). Since intD # ¥, we can choosé ¢ int D. Clearly, g(x) < 0. Let for all
ke{l, 2,...},

Vo= (L= A vf 4+ Ak, (7)

wherei, := g(v*)/g(v*) — g(&), then it follows from the following theorem that
{y*}22, belongs taD and thaf{y*};2, has a subsequen¢g«}>*  such thay*s —
v asq — oo.

THEOREM 4.1. Assume that an infinite sequenpg}?° ; is generated by the
algorithm OAM based on the cutting plane method for probtgh and thatv
is an accumulation point ofv*}?° ;, then the infinite sequende®}?° ; defined by
condition (7) for {v*}2°, satisfies the following conditions:

(i) {y*}22, c D and

(i) there is a subsequende* Yoe1 C {y*}22, such thaty®s — v asq — oc.

Proof. At first, we prove the statement (i). L = g(v¥)/g(v*) — g(&) for
eachk € {1,2,...}. Sinceg(v*) > Oforallk € {1,2,...} andg(x) < 0, we
haveg(v¥) — g(x) > Oforallk € {1,2,...}. Therefore, O< A, < 1forallk e
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{1, 2, ...}. Moreover, since is a convex functiong (y*) = g((L— v +1%) <
(1 — 2)g (k) + Ag(%) =0forallk € {1,2,...}. Consequently{y*}>°, C D.
Next, we prove the statement (ii). Singés an accumulation point df*}%°,,
there is a subsequen(:e’(q}f;il such that*s — v asq — oo. Moreover, since
is continuousg(vf) — g(v) = 0 asqg — oo. Therefore A, — 0 asq — oo.
Consequentlyy®s = (1 — X )v* + Ay, £ — v asqg — oc. O

For the sequencéy}?°, in Theorem 4.1, we se¥; := min{f(y') : i =
1,2,...,k}forallk € {1,2,...}. By Theorem 4.1 and the continuity gf, we
can verify that

My >My>--->M;>---> f(v) and M; — f(v)ask — oo. (8)
According to condition8) and Remark 2.1,
Ve >0, 3Jkoe{l2...} suchthat M;, — f(v*) <e. (9)

Then, we consider the following stopping criterion:
If M, — f(v*) < e for a givene > 0, then stop:y € argminf(y") : i =
1,2,...,k}is an approximate solution of proble@®) (NSC).
By condition (9), the algorithm witiNSC) terminates after finite iterations. As-
sume that the algorithm terminates at stephat is,M; — f(v®) < ¢ for a given

¢ > 0. Then, we have an approximate solutifor problem(P) by the algorithm
with (NSC), it satisfies the following:

fO)—f@) < fO) - f@)<e and yeD.

Consequently, we get over the incomplete points | and Il by improving the algo-
rithm OAM based on the cutting plane method by replacing the stopping criterion
(SC1)by (NSC).

4.1.2. On the supporting hyperplane method

In this section, we improve the algorithm OAM based on the supporting hyper-
plane method in Case 1. Denote by}?°, an infinite sequence generated by
the algorithm for problem(P). Then, we remember that the infinite sequence
{y*}22, C D satisfying y* eJv*, £[Nbd D (k = 1,2,...) are generated by
the algorithm for{v¥}2°; (see condition(6)). Assume tha® is an accumulation
point of {v*}>°,. Then, it follows from the following theorem th&y*}°, has a
subsequencgy*}>2, such thays — o asq — oo.

THEOREM 4.2. Assume that is an interior point of the feasible sé of prob-
lem (P) and that infinite sequencds*}?°, and {y*}>°, are generated based on
the supporting hyperplane method for the problem whérés an optimal solu-
tion of the relaxed probleniQ,) for all k € {1,2,...} and y* e]vk, £[ for all

k € {1,2,...}. Letv be an accumulation point dfv*}?2,. Then{y*}?°; has a
subsequenc(ay"q}j;o:l C {y122, such thaty* — v asq — oo.
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Figure 5. {yk},‘z‘;l generated by the algorithm OAM based on the supporting hyperplane
method for problengP).

Proof. Sincev is an accumulation point dfv*}°,, {v¥}2°; has a subsequence
{vh}22; such thaw’s — v asq — oo. Letyy, = g(v')/g(v") — g(X) for all
g € {1,2,...}. Sinceg(vk) > Oforallg € {1,2,...} andg(X) < O, we have
0 <, < lforalg € {1,2, ...}. Moreover, sinceg(vf) — g(v) = 0 as
q — oo, we get thag, — 0asqg — oo.

For {vf4}>,, we remember that a subsequerigl }>2, C {y*};2, satisfying
yk ek, £[Nbd D for all ¢ € {1,2,...} is generated by the algorithm (see
condition (6)). Therefore, there akg, €]0, 1[, forq = 1,2, ..., such thaty*s =
(1 — g, )v% + A, X. Sinceg(y*) = Oforallg € {1,2,...} andg is convex, we
have

0 =g(*) = g((L— A )M + Ay, %)
< (1= M, )W) 4 Ay, g(X)
= (1 — e, ) g (") + i, g (X) + (i, — Ai, ) (g(W*) — g(3))

forall g € {1,2,...}. Moreover, sincgl — ukq)g(vkq) + i, g(x) = 0 for all
g €{1,2,...}, we get 0< (u, — M) (g(W*) — g(®)) forallg € {1,2,...}.
Sinceg(vf) — g(X) > Oforallg € {1,2,...}, we get thath;, < w, for all
qgefl,2, ...}

Consequently, we get thag, — 0 asq — oo. Thus, by(6), yk — § as
g — oo. This completes the proof. O

From the result of Theorem 4.2, we get over the incomplete points I, Il by improv-
ing the algorithm by using the stopping criteridSC).
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Figure 6. Np (y¥) is the normal cone t® at y.

4.2. IMPROVEMENT OF THE ALGORITHM OAM FOR GETTING OVER THE
INCOMPLETE POINT Il

The algorithm OAM based on the supporting hyperplane method for profem
does not have the incomplete point Ill, if the restriction of the feasible set is a
strict convex function (Horst and Tuy [6]). In this section, for problef) whose
feasible seD is defined by a not-strict restriction, we improve the algorithm OAM
for getting over the incomplete point lll. We suggest another way of constructing
an affine functioms; : R" — R in the case ob* ¢ D at stepk, of the algorithm
OAM for problem(P). At first, we consider an affine function

hi(x) = (a*, x — y") (10)

wherey* e]v*, £[Nbd D for a givent e int D anda* € 9g(y*) is an extreme
direction of Np (y%).

REMARK 4.1. LetD C R" be a compact, convex set afl := {x € R" :
gix)<0,i=1...,m}whereg; : R" — R,i =1,2,...,m, are differentiable
convex functions. Then, for all € D,

dg(={xeR :x=> MVg(), Y A=1x=0forallie L(y)
ieL(y) i€L(y)

LEMMA4.1. LetD C R" be a compact, convex setafd:= {x € R" : g;(x) <
0,i=1...,m}whereg; : R" — R,i = 1,...,m, are differentiable convex
functions and letVp (y) be the normal cone t® aty € D. Ifint D = {x € R" :
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gix)<0,i=1,...,m} #@,thenforally € bd D,

Np(y) ={xeR":x= ) XVg(y).x =0forallie L(y)
i€L(y)
Proof. Let Tp(y) be the tangent cone 1 aty € D. Since intD = {x € R" :
gi(x) <0,i=1,...,m} # @, we have for ally € bd D,

Tp(y) ={x e R" : (Vgi(y),x —y) =0,i € L(M}.
Therefore, for ally € bd D,

No()=Tp(y)*=1x€R" :x= ) LVg(y). ki =0forallie L(y)
ieL(y)

Then, by the following theorem that we can get over the incomplete point I11.

THEOREM 4.3. Assume that® ¢ D is an optimal solution of the relaxed prob-
lem (Qy,) at stepkq in the algorithm OAM based on the way of constructing
an affine function defined by condition (10) for probléR). Then, a constraint
hi,(x) < Ois essential forS, (k > ko), i.e.,

S =SiN{xeR":h;(x)<0, j=1,... k—1)
£S5 N{xeR :hj(x) <0, j=1,... . k—1andj # ko).

Proof. We consider a closed half spa&e:= {x € R" : hj,(x) < 0}. For each
k > ko, let

H :={x€eR":hj(x) <0, j=1,... . k—1and j# ko}.

We shall show that for eadh> ko, H,; ¢ X. Suppose to the contrary thia, (x) <
Oforallx € H,. Fory* eJv*o, x[nbd D for somez < int D, we havey*® € bd H,
sinceD C H, C X andy* e bd DNbd X. Thus, there ip € {1,... , k —1}\{ko}
such thatz,(y©) = 0. Let P, be the set of all indices satisfying thag(y*) = 0.
SinceH,, is a closed convex cone and the Bet= {x € R" : h,(x) <0, p € Pk’}
is a convex cone, we have C X. Moreover, for allp € Pk’, andx € R",

hp(x) = (a”,x — yP) = (a”, x — y*) + (a”, y** — yP)
= (ap’x - yk0> +hl7(yko) = (ap’x - yk0>’ (ll)
and sof = {x € R" : (a”, x — y®) < 0, p € P,} and by condition (10)X = {x €

R" : (a*, x — y*) < 0}. We note thatX andY are convex polyhedral cones, and
then

(X — yko)* ={z € R" : z = Adb, A > 0},
Y =y ={zeR 2=} pha’ 2,20 pe P}
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SinceY — y*o c X — yko, we have(Y — {y*})* O (X — {y*})*. Consequently, we
getthat there arg, > 0, p € Pk’, satisfying that

Z Apal = a'o. (12)

peP,i
Sincea” € dg(y”) forall p € P, andy” € bd D,
g(x) = (a”,x —yP) +g(y") = (a”, x —y?), forallx e R". (13)

From conditions (11) and (13), it follows that for alle R", g(x) > (a”, x — y*°),
pE Pk’. Consequently, we get that

a? € 9g(y*®) c U(y*), forall p e Pk/. (14)

The optimality ofv*e for the relaxed probleniQ,,) implies thaty*e ¢ bds; for
all j < ko,i.e, P,N{L, ..., ko — 1} = . Sinceh,(2) < 0 andhy,(v?) < 0 for
all p € P, we have

iy (¥7) = (@', y? — y*0) = (1— ) (@0, vP — y*) + 1, (a*, £ —y*) <O,
(15)

whereuw, €]0,1[, p € Pk’, satisfyingy” = (1—pu,)v” +u,x. Moreover ,(yk) =
(aP, y*o — yPy =0forall p € P,:. Consequently, we get that

ak £ ,a?, forallpe P, x,>0. (16)

By conditions (12), (14) and (16), there ar& x? € U (y%0), a1, @» > 0 such
thatx! # a*, x2 # d* anda* = ax! + apx?. By condition (10),a* is an
extreme direction oV, (y*). This is a contradiction, and hence there is H,;
such thati,(z) > 0, i.e.,H, ¢ X. Sincey® ¢ bd S;, we get thatS, # S1 N H,.
This completes the proof. O

From the result of Theorem 4.3, we can get over the incomplete point Il by im-
proving the algorithm by using condition (10). However, in order to implement the
algorithm OAM, the following question must be examined:

(A) How do we find an extreme direction 8f, (y) in each step ?

We consider the case thalt ¢ D at stepk in the algorithm OAM. If|L(y*)| <
2, then for anyi € L(y*), Vg;(y*) is an extreme direction oy (y*). Other-
wise, by denoting thakL (y*) = {iy, ... .1} (Irx = 3), we consider the following
problem:

(E) Minimize (v* — yk, ¢/)
k i J=—1 o (vk P —
subject to ¢/ = Ve, GO Vg, (), Jj=1...,k.
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Note that at each stépin the algorithm,/, < m (we note thatn is the number
of the differentiable convex functions which define the feasiblelsef problem
(P)). Thus, at each stépin the algorithm, the number of the feasible solutions of
problem(E;) is finite.

THEOREM 4.4. If ¢ is an optimal solution ofE}), thenc is an extreme direction
of Np ().

Proof. We shall show thaf # Aic/t + Axc’2 for anyc/t, c¢? € {¢/ @ j =
1, ..., }andAy, Ao > 0. Indeed, suppose to the contrary that there gxist, €
(,..., L}, A, Ao > Osuchthat = Aic/t + Axc?2, ¢ # ¢ty ¢ # c2, ¢t # cl2.
Since(ct, ¢2) < 1,

1=(c,¢) = (A1c/t + Apc’2, Aycit + Aoc’2)
= M2(c, ¢t) + 1% (c2, ¢72) + 2hqha(ct, ¢I2)
< A2+ A%+ 20k
= (A1 + A2)%

Hence, we have

(W =¥k, 0) = aq(oF — yh ety 4 Ao (vf — yE, o)
> (A1 + A2) min{(v* — ¥k, c1), (vk — ¥k, c2)}
> min{(vk — yk, /1), (vk — YK, ¢f2)}.

This is a contradiction to the optimality éffor problem(E}). This completes the
proof. O

From the result of Theorem 4.4, it follows thais an extreme direction a¥, (y*)
provided that solves problem(E}). In order to get over the incomplete point Il
and settle question (A), in the case of the algorithm OAM for probldhy, we
construct an affine functiohy, : R" — R by

h(x) == (¢, x — y*) (17)

where y* v, X[Nbd D for somex e int D and¢ is a minimizing point of

(v — ¥k, c) over{c € R" : ¢ = Vg(OM/IV&OHI, i € LM} Clearly,

hy : R" — R satisfies thaty;(vf) > 0 and thati;(x) < 0 for anyx € D.
Hence, the affine functioh, (x) defined by condition (17) satisfies conditions (1)
and (2). Consequently, we can implement the proposed algorithm OAM by using
such functionz (x).

5. Conclusions

In this paper, we have presented two kinds of algorithms of an outer approxima-
tion method for a quasi-concave programming problem. One of them generates
an infinite sequence which is contained in the feasible set of the problem and
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whose accumulation points are optimal solutions for the problem, or it generates
a finite sequence which is contained in the feasible set and whose terminal point
is an optimal solution for the problem. Implementing the algorithm we can get an
approximation value with its error for the optimal value less than a given posi-
tive constant (tolerance), and the approximate solution is always contained in the
feasible set.

At each step, the other algorithm generates an essential inequality which is
needed to produce a feasible set of each relaxed problems for the original problem
whose feasible set is defined by a finite number differentiable convex functions.
Therefore, the algorithm does not have any redundant iterations. Consequently, the
algorithm does not need to have an additional procedure of identifying redundant
constraints.

Finally, by combining such two algorithms wittNSC) and by constructing
an affine function defined by condition (17) in each step at the same time, we
can propose one algorithm getting over the incomplete points I, Il and Il for the
algorithm OAM for problem(P) simultaneously.
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